الأحد، 8 يونيو 2008


Feedback
Approximate Reasoning in MAS: Rough Set Approach
Full text
Pdf (109 KB)
Source
Web Intelligence archiveProceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence table of contents
Pages 12-18
Year of Publication: 2006
ISBN:0-7695-2747-7
Author
Andrzej Skowron
Warsaw University, Poland
Publisher
IEEE Computer Society Washington, DC, USA
Bibliometrics
Downloads (6 Weeks): 10, Downloads (12 Months): 137, Citation Count: 0
Additional Information:
abstract references index terms collaborative colleagues
Tools and Actions:
Review this Article Save this Article to a Binder Display Formats: BibTex EndNote ACM Ref
DOI Bookmark:
10.1109/WI.2006.43
ABSTRACT
In modeling multiagent systems for real-life problems, techniques for approximate reasoning about vague concepts and dependencies (ARVCD) are necessary. We discuss an approach to approximate reasoning based on rough sets. In particular, we present a number of basic concepts such as approximation spaces, concept approximation, rough inclusion, construction of information granules in calculi of information granules, and perception logic. The approach to ARVCD is illustrated by examples relative to interactions of agents, ontology approximation, adaptive hierarchical learning of compound concepts and skills, behavioral pattern identification, planning, conflict analysis and negotiations, and perception-based reasoning.
REFERENCES
Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

1
[1] Rough Set Exploration System (RSES). Available at: logic.mimuw.edu.pl/~rses.

2
[2] R. M. Axelrod. The Complexity of Cooperation. Princeton University Press, Princeton, NJ, 1997.

3
[3] J. Bazan. The Road simulator. Available at: logic.mimuw.edu.pl/~bazan/simulator.

4
[4] J. Bazan, P. Kruczek, S. Bazan-Socha, A. Skowron, and J. J. Pietrzyk. Automatic planning of treatment of infants with respiratory failure through rough set modeling. In Proceedings of RSCTC'2006, LNAI. Springer, Heidelberg, 2006. to be published.

5
[5] J. Bazan, P. Kruczek, S. Bazan-Socha, A. Skowron, and J. J. Pietrzyk. Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In Proceedings of IPMU'2006, Paris, France, July 2-7, 2006, pages 2650-2657. Éditions E. D. K., Paris, 2006.

6
[6] J. Bazan, A. Skowron, and R. Swiniarski. Rough sets and vague concept approximation: From sample approximation to adaptive learning. Transactions on Rough Sets V: LNCS Journal Subline, Springer, Heidleberg, LNCS 4100:39-62, 2006.

7
[7] J. G. Bazan, J. F. Peters, and A. Skowron. Behavioral pattern identification through rough set modelling. In Slezak et al. [57], pages 688-697.

8
[8] J. G. Bazan and A. Skowron. Classifiers based on approximate reasoning schemes. In Dunin-Keplicz et al. [19], pages 191-202.

9
Sven Behnke, Hierarchical Neural Networks for Image Interpretation (Lecture Notes in Computer Science), Springer-Verlag New York, Inc., Secaucus, NJ, 2003

10
Eric Bonabeau , Marco Dorigo , Guy Theraulaz, Swarm intelligence: from natural to artificial systems, Oxford University Press, Inc., New York, NY, 1999

11
[11] L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3):199-231, 2001.

12
[12] F. Brown. Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.

13
Nicholas L. Cassimatis, A cognitive substrate for achieving human-level intelligence, AI Magazine, v.27 n.2, p.45-56, July 2006

14
Nicholas Cassimatis , Erik T. Mueller , Patrick Henry Winston, Achieving human-level intelligence through integrated systems and research: introduction to this special issue, AI Magazine, v.27 n.2, p.12-14, July 2006
15
Anand Desai, Introduction, Communications of the ACM, v.48 n.5, May 2005 [doi>10.1145/1060710.1060736]

16
[16] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. Artificial Intelligence , 13(5):227-303, 2000.

17
Patrick Doherty , Witold Lukaszewicz , Andrzej Skowron , Andrzej Szalas, Knowledge Representation Techniques (Studies in Fuzziness and Soft Computing), Springer-Verlag New York, Inc., Secaucus, NJ, 2006

18
Richard O. Duda , Peter E. Hart , David G. Stork, Pattern Classification (2nd Edition), Wiley-Interscience, 2000

19
Barbara Dunin-Keplicz , Andrzej Jankowski , Andrzej Skowron , Marcin Szczuka, Monitoring, Security, and Rescue Techniques in Multiagent Systems (Advances in Soft Computing), Springer-Verlag New York, Inc., Secaucus, NJ, 2005

20
[20] M. Fahle and T. Poggio. Perceptual Learning. The MIT Press, Cambridge, MA, 2002.

21
Kenneth D. Forbus , Thomas R. Hinrichs, Companion cognitive systems: a step toward human-level AI, AI Magazine, v.27 n.2, p.83-95, July 2006

22
Richard Granger, Engines of the brain: the computational instruction set of human cognition, AI Magazine, v.27 n.2, p.15-32, July 2006

23
[23] G. Frege. Grundgesetzen der Arithmetik, 2. Verlag von Hermann Pohle, Jena, 1903.

24
[24] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning: Data Mining, Inference, and Prediction . Springer, Heidelberg, 2001.

25
Murray Gell-Mann, The quark and the jaguar: adventures in the simple and the complex, W. H. Freeman & Co., New York, NY, 1995

26
Dana Nau , Malik Ghallab , Paolo Traverso, Automated Planning: Theory & Practice, Morgan Kaufmann Publishers Inc., San Francisco, CA, 2004

27
[27] A. Jankowski and A. Skowron. A wistech paradigm for intelligent systems. Transactions on Rough Sets VI: LNCS Journal Subline, Springer, Heidleberg, LNCS, 2007. to be published.

28
[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:227-303, 1996.

29
Sarit Kraus, Strategic negotiation in multiagent environments, MIT Press, Cambridge, MA, 2001

30
Pat Langley, Cognitive architectures and general intelligent systems, AI Magazine, v.27 n.2, p.33-44, July 2006

31
[31] S. Lesniewski. Grungzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae, 14:1- 81, 1929.

32
Autonomous agents and multi-agent systems: explorations in learning, self-organization and adaptive computation, World Scientific Publishing Co., Inc., River Edge, NJ, 2001

33
Jiming Liu , XiaoLong Jin , Kwok Ching Tsui, Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling (Multiagent Systems, Artificial Societies, and Simulated Organizations), Springer-Verlag New York, Inc., Secaucus, NJ, 2004

34
[34] M. Luck, P. McBurney, and C. Preist. Agent Technology. Enabling Next Generation Computing: A Roadmap for Agent Based Computing. AgentLink, 2003.

35
[35] J. ¿ukasiewicz. Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, Kraków 1913. In L. Borkowski, editor, Jan ¿ukasiewicz - Selected Works, pages 16-63. North Holland & Polish Scientific Publishers, Amsterdam, London, Warsaw, 1970.

36
Elizabeth Amy Mcgovern , Andrew G. Barto, Autonomous discovery of temporal abstractions from interaction with an environment, University of Massachusetts Amherst, 2002

37
[37] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh. Computational Maps in the Visual Cortex. Springer, Hiedelberg, 2005.

38
[38] H. S. Nguyen. Approximate boolean reasoning: Foundations and applications in data mining. In J. F. Peters and A. Skowron, editors, Transactions on Rough Sets V: Journal Subline, volume 4100 of Lecture Notes in Computer Science , pages 344-523. Springer, Heidelberg, 2006.

39
[39] H. S. Nguyen, J. Bazan, A. Skowron, and S. H. Nguyen. Layered learning for concept synthesis. Transactions on Rough Sets I: LNCS Journal Subline, Springer, Heidleberg, LNCS 3100:187-208, 2004.

40
[40] S. H. Nguyen, T. T. Nguyen, and H. S. Nguyen. Rough set approach to sunspot classification. In Slezak et al. [57], pages 263-272.

41
[41] T. T. Nguyen and A. Skowron. Rough set approach to domain knowledge approximation. In G. Wang, Q. Liu, Y. Yao, and A. Skowron, editors, Proceedings of the 9-th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC'2003), Chongqing, China, Oct 19-22, 2003, volume 2639 of LNCS, pages 221- 228. Springer, Heidelberg.

42
Lech Polkowski , Sankar K. Pal , Andrzej Skowron, Rough-Neuro-Computing: Techniques for Computing with Words, Springer-Verlag New York, Inc., Secaucus, NJ, 2002

43
Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992

44
[44] Z. Pawlak and A. Skowron. Rough sets and boolean reasoning. Information Sciences, 2006. to be published.

45
[45] Z. Pawlak and A. Skowron. Rough sets: Some extensions. Information Sciences, 2006. to be published.

46
[46] Z. Pawlak and A. Skowron. Rudiments of rough sets. Information Sciences, 2006. to be published.

47
[47] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the AMS, 50(5):537-544, 2003.

48
[48] L. Polkowski and A. Skowron. Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning, 15(4):333-365, 1996.

49
[49] H. Rasiowa. Algebraic models of logics. Warsaw University, Warsaw, 2001.

50
Craig Schlenoff , Jim Albus , Elena Messina , Anthony J. Barbera , Raj Madhavan , Stephen Balakrisky, Using 4D/RCS to address AI knowledge integration, AI Magazine, v.27 n.2, p.71-82, July 2006

51
[51] A. Skowron. Rough sets in KDD (plenary talk). In Z. Shi, B. Faltings, and M. Musen, editors, 16-th World Computer Congress (IFIP'2000): Proceedings of Conference on Intelligent Information Processing (IIP'2000), pages 1-14. Publishing House of Electronic Industry, Beijing, 2000.

52
[52] A. Skowron. Perception logic in intelligent systems. In S. Blair et al, editor, Proceedings of the 8th Joint Conference on Information Sciences (JCIS 2005), July 21-26, 2005, Salt Lake City, Utah, USA, pages 1-5. X-CD Technologies: A Conference & Management Company, ISBN 0-9707890-3- 3, Toronto, Ontario, Canada, 2005.

53
Andrzej Skowron, Rough Sets and Vague Concepts, Fundamenta Informaticae, v.64 n.1-4, p.417-431, January 2005

54
[54] A. Skowron. Rough sets in perception-based computing (keynote talk). In S. K. Pal, S. Bandoyopadhay, and S. Biswas, editors, First International Conference on Pattern Recognition and Machine Intelligence (PReMI'05) December 18-22, 2005, Indian Statistical Institute, Kolkata, volume 3776 of LNCS, pages 21-29, Heidelberg, 2005. Springer.

55
[55] A. Skowron and J. Stepaniuk. Information granules and rough-neural computing. In Pal et al. [42], pages 43-84.

56
Andrzej Skowron , Jarosław Stepaniuk , James Peters , Roman Swiniarski, Calculi of Approximation Spaces, Fundamenta Informaticae, v.72 n.1-3, p.363-378, January 2006

57
Dominik Slezak , JingTao Yao , James F. Peters , Wojciech Ziarko , Xiaohua Hu, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing: 10th International Conference, RSFDGrC 2005, Regina, Canada, August 31 - September 2, 2005, ... / Lecture Notes in Artificial Intelligence), Springer-Verlag New York, Inc., Secaucus, NJ, 2005

58
Peter Stone, Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer, MIT Press, Cambridge, MA, 2000

59
Richard S. Sutton , Andrew G. Barto, Introduction to Reinforcement Learning, MIT Press, Cambridge, MA, 1998

60
William Swartout , Jonathan Gratch , Randall W. Hill , Eduard Hovy , Stacy Marsella , Jeff Rickel , David Traum, Toward virtual humans, AI Magazine, v.27 n.2, p.96-108, July 2006

61
[61] K. Sycara. Multiagent systems. AI Magazine, pages 79-92, Summer 1998.

62
[62] C. Urmson, J. Anhalt, M. Clark, T. Galatali, J. P. Gonzalez, J. Gowdy, A. Gutierrez, S. Harbaugh, M. Johnson-Roberson, H. Kato, P. L. Koon, K. Peterson, B. K. Smith, S. Spiker, E. Tryzelaar, and W. R. L. Whittaker. High speed navigation of unrehearsed terrain: Red team technology for grand challenge 2004. Technical Report CMU-RI-TR-04-37, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, June 2004.

63
[63] W. Van Wezel, R. Jorna, and A. Meystel. Planning in Intelligent Systems: Aspects, Motivations, and Methods. John Wiley & Sons, Hoboken, New Jersey, 2006.

64
[64] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, NY, 1998.

65
[65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338- 353, 1965.
INDEX TERMS
Primary Classification: I. Computing Methodologies I.2 ARTIFICIAL INTELLIGENCE I.2.4 Knowledge Representation Formalisms and Methods
Additional Classification: I. Computing Methodologies I.2 ARTIFICIAL INTELLIGENCE I.2.11 Distributed Artificial Intelligence Subjects: Multiagent systems I.2.3 Deduction and Theorem Proving

ليست هناك تعليقات: